

Copper for artificial photosynthesis

Marc Fontecave

Laboratoire de Chimie des Processus Biologiques, UMR 8229 CDF/CNRS/UPMC Collège de France, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05 marc.fontecave@college-de-france.fr; Phone: (0033)144271360

ETHYLENE

47.2 MJ/kg; 0.055 MJ/L

 $Ethylene \rightarrow Polyethylene$

(polyvinyl chloride, polystyrene)

Ethylene: 200 millions tons in 2018 (the largest of any organic chemical)

Currently

Steam cracking of naphta or saturated hydrocarbons (750-950°C)

Enormous energy inputs
 (8% de the total primary energy consumption in chemical industry)

> Production of 2 tons CO_2 / ton ethylene)

Artificial photosynthesis: two scenarios

- Technology still immature
- Solar-To-Fuels efficiency <1%</p>
- Low current densities (< 50 mA.cm⁻²)
- Integration > low tunability
- Light-degradation of catalysts
- Electrolyte-degradation of photoabsorber
- Integration > limited cost
 - Mobility (free of electricity source)

- Mature technologies
 - Closest to commercialization
 - > PV-electricity price: 0.03/kWh (\checkmark)
 - (the electricity cost is the largest expense)
 - Solar-To-Fuels yields 5-10 % (CO)
 - System separation: tunable
 (Independent optimization PV vs EC)
- PV to EC matching > cost

Artificial photosynthesis scenario : photovoltaics + electrolysis

- CATALYSIS

Homogeneous/molecular catalysts ? (which ligands? Which metal ions ?)

Heterogeneous/solid catalysts ?

Efficiency: Highest current density: > 0.2 A.cm⁻²

Lowest overpotential (cathode: 0.4-1 V vs anode 0.2-0.3 V at 10-50 mA.cm⁻²)

Stability (corrosion/deactivation)

Use the same catalyst at both electrodes Earth-abundant materials pH

Cost (the electricity costs are the largest contribution)

Heterogeneization of molecular complexes

Nanostructuration of surfaces Tailoring the morphology

- SOLVENT

Water (but low solubility of CO₂-30 mM) Mass transport limitations

Liquid phase electrolyzer

Continuous flow electrochemical cell Gas diffusion electrodes

Gas phase electrolyzer (Gas diffusion electrode)

Optimization with ≠ cations/anions Ionic liquids ?

Alkaline electrolysis ? Neutral electrolysis ?

Electrolyte

- SELECTIVITY

How to avoid/control H₂?

How to direct the reaction towards the desired product ? (product purification)

Control by the

- Catalyst (metal/morphology/ligand)
- Electrolyte
- Conductive support

- PRODUCTS

Liquid ? (ethanol, formic acid)

Gas ? (CO, CH₄,..)

2 e⁻ (CO,..) or ne⁻ (CH₄, C₂H₄..) products?

Fischer-Tropsch

CO (\$3B)

Economically unviable (high CAPEX)+ CO₂ emissions

New markets ?

HCO₂H (\$0.6B)

Fuel

CH₃OH Rarely observed in CO2RR

Hydrocarbons

CH₄ too cheap
Ethylene interesting (\$220B)
but currently cheap (shale ethane cracking)
Propylene very interesting

Alcohols

Ethanol very interesting (\$75B) + propanol + ethylene glycol

CO₂ reduction catalysis: Why Copper ?

CO2 Electrocatalysts Group 1 Group 18 **METALS** H 1s co He 1s² 1.0079 4.0026 Group 2 13 14 15 17 H2 10 3 9 Pt, Fe, Co H_2 F HC в N 0 Li 2st Be Ne 6.941 9.012 10.81 14.0067 15.999 18.998 20.179 нсоон Ag, Au, Pd, Zn, Ni 11 12 16 17 18 CO AI Ρ CI Na Mg Grou S Ar 39.948 22,989 24.305 30.974 32.06 35.453 12 Pb, Sn, Sn 20 21 34 35 36 HCO₂H 19 31 32 33 K Ca Sc V Mn Fe Co Ga Br Kr Ge As Se 39.098 40.08 44.956 69.72 72.59 74.922 78.96 79.904 83.8 37 54 38 39 43 51 52 53 Cu **Hydrocarbons** Y Rb Sr Zr Mo Tc Ru Pd Sb Te 1 Xe Ag 85.468 87.62 88.906 98 07 868 131.29 121.75 127.6 126.905 55 56 86 57 83 84 85 76 **Alcohols** Po Cs Ba La Та W Re Os Pt Au Pb Bi At Rn 132.905 137.33 222 138.906 107 87 88 89 104 105 106 Fr Ung Uns Ra Ac Unp Unh 223 226 025 227.028 262 26 262 263

Porous dendritic Cu-based material

Nanostructuring surfaces Tailoring the morphology

✓ macro/micro-porous structure (efficient mass transfer)
 ✓ high (electrochemical) surface area

Angew. Chem. 2017, <u>56</u>, 4792

Porous dendritic Cu-based material

The same catalyst for the anode and the cathode

A stable and efficient CO₂ reduction catalyst : Selective for **ethylene** formation

Proc. Natl. Acad. Sci. 2019, <u>116</u>, 9735

A stable and efficient O₂ evolution catalyst : 10 mA.cm⁻² at 280 mV overpotential (1M NaOH)

Angew. Chem. 2017, <u>56</u>, 4792

A flow electrochemical cell

From sun to hydrocarbons: photovoltaic + electrolyzer

PV coupled to Electrolyzer

perovskite solar cells

yield: 16.7% delivering 2.8 V

F. Bella

Ethylene C₂H₄ (35%) Ethane C₂H₆ (8%) H₂ 42%; HCOOH 6%; CO 5%

Current density 18 mA.cm⁻²

 $2 \operatorname{CO}_2 + 2 \operatorname{H}_2 \operatorname{O} \xrightarrow{} \mathbf{C}_2 \mathbf{H}_4 + 3 \operatorname{O}_2$

Solar-to-hydrocarbon efficiency : 2.3 %

Proc. Natl. Acad. Sci. 2019, 116, 9735-9740

From sun to hydrocarbons: photovoltaic + electrolyzer

photovoltaics	cathode	anode	electrolyte	product	solar to fuel efficiency (%)	partial current density (mA/cm ²) ^a
Si	Cu ₂ O- derived Cu	IrO _x	0.2 M KHCO ₃	C_2H_4	1.5	6.5
Si	In	IrO _x	1 М КНСО ₃	НСООН	1.4 - 1.8	N.R. ^b
Si + InGaN	In	Ni-O	3 М КНСО ₃	HCOOH	0.97	~ 0.4
SiGe	Ru-based polymer	IrO _x	0.1 M phosphate buffer (K ₂ HPO ₄ :KH ₂ PO ₄ = 1:1)	НСООН	4.6	~ 0.1
GaAs/InGaP	Pd/C	Ni	2.8 М КНСО ₃ /ВРМ/1.0 М КОН	HCOOH	10	~ 8
Si	Au	CoO_x	0.5 M KHCO3	CO	2.0	~ 1.5
$Cu(In_xGa_{1-x})(S_ySe_{1-y})_2$	Au	Co ₃ O ₄	0.5 M KHCO3	CO	4.23	N.R.
perovskite	Au	IrO ₂	0.5 M NaHCO ₃	CO	6.5	~ 1.4
Si	WSe ₂	Co-O/OH	50% EMIM-BF ₄ in water (cathode)/potassium phosphate buffer (anode)	СО	4.6	N.R.

Hydrophobicity and Nature

Nature has special mechanisms to keep gas trapped at a surface when submerged

Diving bell spider Plastron

Gas trapping is controlled by hydrophobic hairs called 'a plastron'

This allows the spider continue to breathe underwater

Can a similar effect be exploited for CO₂ reduction using hydrophobicity?

Controlled current electrolysis (30 mA.cm⁻²)

in 0.1 M CsHCO₃ with CO₂ at flow rate of 5 ml min⁻¹

Wettable dendrite requires –1.1 V vs. RHE *Hydrophobic* dendrite requires –1.5 V vs. RHE

Nature Materials 2019, <u>18</u>, 1222-1227

Flow of CO_2 on the hydrophobic dendrite

Angew. Chem. 2019, <u>58</u>, 15098-15103

Cu for conversion de CO₂ into Ethanol !!

Dilan Karapinar

Cu for conversion de CO₂ into Ethanol !!

Cu for conversion de CO₂ into Ethanol !!

> 55% FY ethanol from CO_2 electroreduction

Angew. Chem. 2019, <u>58</u>, 15098-15103

Operando in situ EXAFS

X-ray spectroelectrochemical setup used at the SAMBA beamline. RE, CE and WE stand for reference, counter and working electrode. SR stands for synchrotron radiation

Active sites: transient Cu nanoparticles ?

Operando XAS characterization of Cu-NC

Coupling CO*/CO*: formation of C-C bonds

Angew. Chem. 2019, <u>58</u>, 15098-15103

Victor Mougel

Tran Ngoc Huan

Sarah Lamaison

Dilan Karapinar

David Wakerley

Collège de France

Dr Victor Mougel Dr. Huan Ngoc Tran Dilan Karapinar Dr. David Wakerley Sarah Lamaison Dr. Gwenaëlle Rousse

ICGM

Acknowledgments

Dr. Frédéric Jaouen Dr. Nastaran Ranjbar

TOTAL

Soleil

Dr. Andrea Zitolo

UPMC **Prof. Nicolas Menguy** Dr. Dario Taverna

Chimie Paristech Dr. Sandrine Zanna

University of Torino Dr Federico Bella

1530

Copper for artificial photosynthesis

Marc Fontecave

Laboratoire de Chimie des Processus Biologiques, UMR 8229 CDF/CNRS/UPMC Collège de France, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05 marc.fontecave@college-de-france.fr; Phone: (0033)144271360

