

Functional organic dyes in light harvesting applications

Claudia Barolo

NIS Interdepartmental and INSTM Reference Centre, ICxT Interdepartmental Centre, Department of Chemistry, Università degli Studi di Torino, Turin, Italy E-mail: claudia.barolo@unito.it

Avogadro Colloquia 2019 _ Roma CNR, 17th -18th December 2019

Elements of the Periodic Table for Energy

in **ENERGY** PRODUCTION

The 90 natural elements that make up everything

How much is there? Is that enough?

Read more and play the video game http://bit.ly/euchems-pt

Fr

Energy production and use

Primary energy – world consumption (million tonnes oil equivalent) Source: BP

Dye-sensitized Solar Cells¹

Photosensitizers requirements

- absorb strongly across the entire visible spectrum broad range of wavelengths, high molar extinction coefficient
- bind strongly to the semiconductor surface (chemical group that can attach to the TiO₂ surface)
- have a energy levels at the proper positions LUMO high enough in energy for efficient charge injection HOMO low enough for efficient regeneration
- have a rapid electron transfer to the TiO₂ in comparison to decay to the ground state of the dye
- be stable over many years
- have low cost
- have simple and reproducible synthesis and purification

Photosensitizer: a key component in the cell

Photosensitizer: a key component in the cell

KS

J.-W. Shiu , Y.-C. Chang , C.-Y. Chan , H.-P. Wu , H.-Y. Hsu , C.-L. Wang , C.-Y. Lin and E. W.-G. Diau , J. Mater. Chem. A, 2015, 3 , 1417 — 1420

F

Photosensitizer: a key component in the cell

Photosensitizer: a key component in the cell

Photosensitizer: key properties to play with

SINGLE MOLECULE PROPERTIES

Photosensitizer: electronic effects

E(eV)

Dyes:

- 1) absorb light in the visible spectrum (400–700 nm),
- 2) have at least one chromophore (colour-bearing group)
- have a conjugated system, i.e. a structure with alternating double and single bonds
- 4) exhibit resonance of electrons, which is a stabilizing force in organic compounds

auxochromes: (i.e.: carboxylic acid, sulfonic acid, amino, hydroxyl groups, etc) these are not responsible for colour, their presence can shift the colour of a colourant and they are most often used to influence dye solubility

Abrahart EN(1977). Dyes and their Intermediates. New York: Chemical Publishing, pp. 1–12

Dye-sensitized Solar Cells: color and transparency

- Architectural compatibility
- Environmental compatibility
- Weak / diffuse light
- Colorful
- Transparency

Chem. Commun. 2012, 48, 2782, Renewable Energy 2013, 60, 672; Energies (2016), 9, 486, PCCP 2014, 16, 24173 Eur. J. Org. Chem. 2016, 13, 2244–2259; ChemSusChem 2017, 10, 2385

Far-red / NIR polymethine dyes

Chem. Commun. 2012, 48, 2782, Renewable Energy 2013, 60, 672; Energies 2016, 9, 486, PCCP 2014, 16, 24173 Eur. J. Org. Chem. 2016, 13, 2244–2259; ChemSusChem 2017, 10, 2385; ChemElectroChem 2017, 4, 2385; Frontiers in Chemistry 2019, 7, 99 14

Modulating the conjugated

 λ_{max} from 643 to 827 nm

Central Functionalized squaraine dyes

Dye	λ _{max} (nm)	
VG1	640	
VG2	690	
VG3	698	
VG10	673	
VG11	714	
VG12	719	

Galliano et al. Energies, 2016, 9, 486

Central Functionalized squaraine dyes: IPCE

Dye	V _{oc} (mV)	J _{sc} (mA/cm²)	FF	η (%)
VG1	642	10.3	0.72	4.7
VG2	560	4.7	0.77	2.1
VG3	584	7.0	0.75	3.1
VG11	587	5.3	0.76	2.5
VG12	599	10.8	0.71	4.6

Symmetric squaraine dyes: effect of alkyl chain

higher photochemical stability on irradiated titania electrodes

highly hydrophobic surface (depending on length and functionalization of the chain)

reference

Dyed electrodes

Far-red / NIR dyes in literature (examples)

NJC, 2019, **43**, 1156

Energy Env Sci. 2011, 4, 189

J. Org. Chem. 2018, 83 (8) 4389-4401

Far-red / NIR dyes in literature (examples)

 Table 2

 Performance of infrared-dye-sensitized solar cells

Infrared dye	$J_{\rm sc}$ (mA cm ⁻²)	$V_{\rm oc}$ (V)	FF (-)	Efficiency (%)
NK-4432	0.37	0.40	0.54	0.08
NK-6037	4.2	0.39	0.67	1.10

dye	$V_{ m oc}\left({ m V} ight)$	$J_{\rm sc}({\rm mA})$	fill factor	η (%)
LSQa	0.46	9.05	0.54	2.26
\mathbf{LSQb}^{b}	0.41	8.64	0.57	2.01
\mathbf{LSQc}^{b}	0.40	9.01	0.51	1.82

Dalton Trans., 2011, **40, 234–242** Sol. En. Mat. & Solar Cell, 2009, **93, 831–835**

Org. Lett., 2011, **13, 22**

COOH conjugated Cy7

Increase conjugation

(from squaraine to cyanine dyes)

Optics Letters 2014 39(10) 2947-2950 J. Phys. Chem. C 2018, 122 (45) 26281-26287 - Biosensors

VG20 dye investigation

Charge collection efficiency approach 100 % for VG20 with 50 mmol/L CDCA

Optimizing VG20 dye: CDCA effect

Wavelength (nm)

CDCA	Voc (mV)	Jsc (mA/cm²)	FF	η (%)
10 mmol/L	356	10.1	0.62	2.2
20 mmol/L	371	9.7	0.65	2.3
30 mmol/L	379	11.3	0.64	2.8
40 mmol/L	390	13.5	0.62	3.2
50 mmol/L	412	14.0	0.62	3.6
60 mmol/L	402	12.3	0.64	3.2

NIR part of conversion ($S_0 \rightarrow S_1$ transition) is improved by the CDCA

Record of 60 % of IPCE at 850 nm with a tail of conversion up to 920 nm

Optimizing VG20 dye

24

Conclusions (1)

VG20 cyanine-based dyes as NIR colorless working DSSC

Beauty of DSSC: totally non intruisive / active transparent and colourless PV

PCE record of 3.1 %

Low cost synthetic protocols and simple symmetric dyes

Simple synthetic procedure to modulate redox and absorption properties

Substitutions on the skeleton modify the dye behaviour on the surface

Counter electrode:materials

FUNCTION: Re-generate the oxidized species of the redox couple Light Photoanode Counter Electrode Electrode MOS 0 Electrolyte Dye D+ DC

Counter electrode: materials

12.01

Carbon

6

Carbonaceous vs polymeric

Green and sustainable Low cost **Good efficiency**

Medium conductivity (metal doping possible)

High carbonization temperature (> 800 °C)

Common Advantages 🚜

Possible direct deposition on FTO **Deposition on flexible substrates Excellent (photo)stability Good chemical Inertness**

Green No CO₂ release Very good efficiency

Sutainability still to be proved **Medium cost**

Use of harsh solvent **Difficult synthesis**

<N>

POLYMERIC ORGANIC NON CONDUCTIVE MATERIALS IN PEROVSKITE SOLAR CELLS?

27

POLYMERIC ENCAPSULATION APPROACH IN PSCs

Unpublished results

POLYMERIC ENCAPSULATION APPROACH IN PSCs

Encapsulation on FLEXIBLE substrate

Acknowledgments

F. Brunetti **B.** Taheri T. Brown S. Castro-Hermosa **G.Lucarelli** F. De Rossi A.Di Carlo **A.Reale**

and all of you for your kind attention